Dynamics of the solar tachocline – II: the stratified case

نویسنده

  • P. Garaud
چکیده

We present a detailed numerical study of the Gough & McIntyre model for the solar tachocline. This model explains the uniformity of the rotation profile observed in the bulk of the radiative zone by the presence of a large-scale primordial magnetic field confined below the tachocline by flows originating from within the convection zone. We attribute the failure of previous numerical attempts at reproducing even qualitatively Gough & McIntyre’s idea to the use of boundary conditions which inappropriately model the radiative–convective interface. We emphasize the key role of flows downwelling from the convection zone in confining the assumed internal field. We carefully select the range of parameters used in the simulations to guarantee a faithful representation of the hierarchy of expected lengthscales. We then present, for the first time, a fully nonlinear and self-consistent numerical solution of the Gough & McIntyre model which qualitatively satisfies the following set of observational constraints: (i) the quenching of the large-scale differential rotation below the tachocline – including in the polar regions – as seen by helioseismology (ii) the confinement of the large-scale meridional flows to the uppermost layers of the radiative zone as required by observed light element abundances and suggested by helioseismic sound-speed data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

9 Dynamics of the solar

Douglas Gough & Michael McIntyre proposed, in 1998, the first global and self-consistent model of the solar tachocline. Their model is however far more complex than analytical methods can deal with. In order to validate their work and show how well it can indeed represent the tachocline dynamics, I report on progress in the construction of a fully nonlinear numerical model of the tachocline bas...

متن کامل

Sustained Magneto-shear Instabilities in the Solar Tachocline

We present nonlinear three-dimensional simulations of the stably-stratified portion of the solar tachocline in which the rotational shear is maintained by mechanical forcing. When a broad toroidal field profile is specified as an initial condition, a clam-shell instability ensues which is similar to the freely-evolving cases studied previously. After the initial nonlinear saturation, the residu...

متن کامل

Self-consistent theory of turbulent transport in the solar tachocline

Aims. To understand the fundamental physical processes important for the evolution of solar rotation and distribution of chemical species, we provide theoretical predictions for particle mixing and momentum transport in the stably stratified tachocline. Methods. By envisioning that turbulence is driven in the tachocline, we compute the amplitude of turbulent flow, turbulent particle diffusiviti...

متن کامل

On a long-term dynamics of the magnetised solar tachocline

Aims. We investigate the confinement and long-term dynamics of the magnetised solar tachocline. Methods. Starting from first principles, we derive the values of turbulent transport coefficients in the magnetised solar tachocline and then explore the implications for the confinement and long-term dynamics of the tachocline. Results. For reasonable parameter values, the turbulent eddy viscosity i...

متن کامل

Magnetic confinement of the solar tachocline

Two distinct classes of magnetic confinement models exist for the solar tachocline. The “slow tachocline” models are associated with a large-scale primordial field embedded in the radiative zone. The “fast tachocline” models are associated with an overlying dynamo field. I describe the results obtained in each case, their pros and cons, and compare them with existing solar observations. I concl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008